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Moving object recognition in a video stream is crucial for applications such as
unmanned aerial vehicles (UAVs) and mobile augmented reality that require
robust and fast recognition in the presence of dynamic camera noise. Devices in
such applications suffer from severe motion/camera blur noise in low-light con-
ditions due to low-sensitivity CMOS image sensors, and therefore require high-
er computing power to obtain robust results vs. devices used in still image appli-
cations. Moreover, HD resolution has become so universal today that even
smartphones support applications with HD resolution. However, many object
recognition processors [1][2] and accelerators [3] reported for mobile applica-
tions only support SD resolution due to the computational complexity of object
recognition algorithms. For example, the prior works [1] and [2] obtain 11f/s
and 7f/s processing speed for HD video streams, respectively, which is far below
real-time requirements. 

This paper presents a moving-target recognition processor for HD video
streams. The processor is based on a context-aware visual attention model
(CAVAM) (Fig. 12.4.1), comprising 3 architectural features: 1) simultaneous
multithreading feature-extraction clusters (SFEC) for high-speed processing of
the scale invariant feature transform (SIFT); 2) a keypoint matching processor
(KMP) for fast object matching; and, (3) a dynamic resource controller (DRC)
with a massively parallel artificial intelligence engine (MP-AIE).

For robust moving object recognition with high processing speed, the CAVAM is
applied to analyze the regions-of-interest (ROIs) in video sequences. The previ-
ous model [1] generated ROIs solely using spatial familiarity between proto and
target objects. Conversely, the CAVAM considers the temporal similarity between
successive images, as well as spatial familiarity in an image. The context state
buffer (CSB) stores the prior recognition results and calculates the current
object location, rt, velocity, vt, and acceleration, at, as clues to the next object
location. Then, the Kalman filter receives rt, vt, and at to compute a predicted
next object location. The temporal familiarity is an elliptic disk whose intensity is
given by e–|mt+1–rt+1|, where rt+1 is the calculated location, and mt+1 is the measured
location. The familiarity map reflects not only the spatial conspicuity but also
temporal continuity so that the obtained ROI can track the target object accurate-
ly irrespective of blurring, color distortion, and occlusion. As a result, the
CAVAM achieves 81% attention accuracy and reduces recognition complexity by
60% for object recognition in HD video streams.

Figure 12.4.2 shows a block diagram of the processor. For object recognition
with 720p resolution, 26 heterogeneous cores are connected together through a
hierarchical network-on-chip (NoC) and clustered into the image processing
core (IPC) and the DRC. The IPC, comprising 4 SFECs, a KMP, and a MP-AIE,
performs the data-intensive recognition operations of the CAVAM, while the DRC
reconfigures the heterogeneous IPC tasks dynamically to maximize system
throughput [4]. The DRC’s global task scheduler (GTS) monitors the number of
ROIs and keypoints in the workload, and dynamically modifies 4 resources: the
threads allocated to the 4 SFECs, the bandwidth of the global network switch, the
operating voltage and the clock frequency.

The 3-stage coarse-grained pipeline architecture realizing the CAVAM algorithm
is depicted in Fig. 12.4.3. The MP-AIE extracts the ROIs in the input image based
on saliency and familiarity maps. The SFEC calculates SIFT keypoint descriptors
from the extracted ROIs. The KMP uses the calculated descriptors for keypoint
matching in target object recognition. The DRC uses the MP-AIE to analyze the
workload patterns at run-time, allowing for the dynamic reconfiguration of the
hardware. For example, even though the CAVAM has at most 45% workload vari-
ance in keypoint description and matching, the DRC achieves stable system
throughput with sustained 95% utilization of the SFECs and KMP and 140.4GB/s
bandwidth in the global network switch, using a weighted round-robin scheme. 

Figure 12.4.4 shows the SFEC architecture which performs simultaneous multi-
threading (SMT) for high-throughput SIFT operations. Thanks to the dual-thread
capability, 4 SFECs can process ~6.8 ROIs simultaneously for HD images. Each
SFEC consists of 1 dual-thread vector processing element (DVPE) for feature
detection and 4 scalar processing elements for keypoint description. The DVPE
has 16 units of 16b SIMD. Each unit is composed of Gaussian filtering (GF), the
difference of Gaussian (DoG), local maximum extraction (LME) and a SIMD con-
troller. Since the GF, DoG and LME are pipelined (3 stages), the DVPE reduces
processing delay by 35% compared to a single-threaded SIMD unit for feature
detection. Compared to a scenario without the dual-thread capability or the ARM
Cortex-A9 SIMD, the DVPE achieves 42% and 65% higher throughput, respec-
tively, for the SIFT operations, with an 11% area overhead.

Figure 12.4.5 shows the KMP architecture for keypoint matching with zero-fil-
tered least-sensitive hashing (ZLSH). The collision equalizer, which is the hash
index generator of KMP, adopts a random permutation algorithm for the 16 sig-
natures of the least-sensitive hashing (LSH) to reduce the redundant zeros in the
signature, reducing DB size by 24% vs. the original LSH using the 30b ZLSH
index. There are two keypoint matching approaches: cache-based matching
(CBM) and DB-based matching (DBM). CBM uses the keypoints from a prior
matching, stored in the cache, to generate the nearest neighbor. If a keypoint is
matched, the matching ends with a 98% reduction in external accesses.
Otherwise, if the keypoint is not matched, an additional DBM is performed, with
the ZLSH index used to access the candidate keypoints of the DB, reducing
accesses by 86% relative to a brute force approach.

The measurement results for the DRC operation are shown in Fig. 12.4.6 for 30
continuous HD video frames. The DRC adjusts the learning rate, α, within 4ms
for target objects with different characteristics. For high-speed on-line learning,
a latch-based fast true random number generator circuit is integrated. Since the
hardware-oriented weight perturbation needs a series of random bits for state
parameters, fast and accurate random numbers are needed to obtain accurate
learning in the DRC. With the help of FIFO-based post processing, the circuit
provides high randomness to the DRC and achieves a 1.3× higher frame rate
than if the IPC were statically allocated. 650GOPS/W power efficiency is
achieved.

A 4×8mm2 test chip is fabricated using 0.13µm 6-metal CMOS technology, inte-
grating 1.4M gates and 382kB of SRAM (Fig. 12.4.7). It achieves 342GOPS peak
performance, with 320mW average power, 1.2V, 200MHz. For moving object
recognition in a 720p video stream severely corrupted by environmental noise,
the processor sustains 83% recognition accuracy – a ~2× improvement over the
45% attained by the previous processor. The chip achieves 650GOPS/W power
efficiency and 10.69GOPS/mm2 area efficiency, representing 17% and 83%
improvements over a state-of-the-art recognition processor [1], respectively.
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Figure 12.4.1: Moving object recognition system with CAVAM. Figure 12.4.2: Overall architecture of the object recognition processor.

Figure 12.4.3: Dynamic resource management of 3-stage CAVAM.

Figure 12.4.5: KMP architecture and throughput improvement. Figure 12.4.6: Measurement results of learning-based DRC.

Figure 12.4.4: Block diagram of SFEC and its multi-threading.
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Figure 12.4.7: Die micrograph and feature summary.




